660 research outputs found

    Optical fiber coupling method and apparatus

    Get PDF
    Systems are described for coupling a pair of optical fibers to pass light between them, which enables a coupler to be easily made, and with simple equipment, while closely controlling the characteristics of the coupler. One method includes mounting a pair of optical fibers on a block having a large hole therein, so the fibers extend across the hole while lying adjacent and parallel to one another. The fibers are immersed in an etchant to reduce the thickness of cladding around the fiber core. The fibers are joined together by applying a liquid polymer so the polymer-air interface moves along the length of the fibers to bring the fibers together in a zipper-like manner, and to progressively lay a thin coating of the polymer on the fibers

    2,2,2-Tris(pyrazol-1-yl)ethanol

    Get PDF
    The title compound TPE, C11H12N6O, was prepared by slow evaporation from diethyl ether. In the crystal, there is a hydrogen bond between the alcohol H atom and an N in the pyrazole ring of a neighboring mol­ecule

    Ranging system which compares an object reflected component of a light beam to a reference component of the light beam

    Get PDF
    A system is described for measuring the distance to an object by comparing a first component of a light pulse that is reflected off the object with a second component of the light pulse that passes along a reference path of known length, which provides great accuracy with a relatively simple and rugged design. The reference path can be changed in precise steps so that it has an equivalent length approximately equal to the path length of the light pulse component that is reflected from the object. The resulting small difference in path lengths can be precisely determined by directing the light pulse components into opposite ends of a detector formed of a material that emits a second harmonic light output at the locations where the opposite going pulses past simultaneously across one another

    Exploring Wells-Dawson Clusters Associated With the Small Ribosomal Subunit

    Get PDF
    The polyoxometalate P2W18O626-, the Wells-Dawson cluster, stabilized the ribosome sufficiently for the crystallographers to solve the phase problem and improve the structural resolution. In the following we characterize the interaction of the Wells-Dawson cluster with the ribosome small subunit. There are 14 different P2W18O626- clusters interacting with the ribosome, and the types of interactions range from one simple residue interaction to complex association of multiple sites including backbone interactions with a Wells-Dawson cluster. Although well-documented that bridging oxygen atoms are the main basic sites on other polyoxometalate interaction with most proteins reported, the W=O groups are the main sites of the Wells-Dawson cluster interacting with the ribosome. Furthermore, the peptide chain backbone on the ribosome host constitutes the main sites that associate with the Wells-Dawson cluster. In this work we investigate the potential of one representative pair of closely-located Wells-Dawson clusters being a genuine Double Wells-Dawson cluster. We found that the Double Wells-Dawson structure on the ribosome is geometrically sound and in line with other Double Wells-Dawson clusters previously observed in the solid state and solution. This information suggests that the Double Wells-Dawson structure on the ribosome is real and contribute to characterization of this particular structure of the ribosome

    2′-3′-Cyclic Nucleotide 3′-Phosphodiesterase Inhibition by Organometallic Vanadium Complexes: A Potential New Paradigm for Studying CNS Degeneration

    Get PDF
    The enzyme, 2′-3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) has been known for over fifty years. Nevertheless, the roles this membrane-bound enzyme play have yet to be described completely. Recently, there has been renewed interest in the study of this enzyme due to studies that suggest that CNPase plays a role in the mediation of cellular inflammatory responses in renal and nervous system tissues. Also, this enzyme, found in oligodendrocytes of the nervous system, has been reported to participate in significant regulatory changes associated with age which may be involved in age-related CNS degeneration. Consequently, development of CNPase inhibitors is of interest and should aid in the study of this, as yet, poorly understood enzyme. In this work we utilized a spectrophotometric enzyme assay to determine the effect a panel of organo-vanadium complexes had on isolated hamster myelin CNPase activity. Our group has now identified several potent in vitro CNPase inhibitors that could prove useful in clarifying the important roles of this enzyme

    Metal Ion Complexes of N,N′-Bis(2-Pyridylmethyl)-trans-1,2-Diaminocyclohexane-N,N′-Diacetic Acid, H2bpcd: Lanthanide(III)–bpcd2– Cationic Complexes

    Get PDF
    The synthesis and characterization of N,N′-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N′-diacetic acid (H2bpcd) cationic complexes of La(III), Nd(III), and Sm(III) are reported. The Ln(III)–bpcd2– complex ions, where bpcd2– stands for N,N′-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N′-diacetate, were isolated as PF6– salts. These salts were characterized by elemental analysis, X-ray crystallography, IR, and 1H and 13C NMR spectroscopy. Binuclear [La2(bpcd)2(H2O)2]2+ crystallized from an aqueous solution in the monoclinic P21/c space group as a cocrystallate with Na2bpcd and NaPF6, nominally Na2.34[La1.22(C22H26N4O4)2(H2O)2][PF6]2·2H2O, with a = 11.3343(6) Å, b = 17.7090(9) Å, c = 15.0567(8) Å, β = 110.632(3)°, and Z = 4 (Z′ = 2). La is eight-coordinate with distorted dodecahedral coordination geometry provided by a N4O4 donor atom set. In addition to four N atoms from the bpcd2– ligand, La’s coordination sphere includes O atoms from a water molecule and three acetate groups (one O atom from singly bound acetate and two O atoms from acetate groups that bridge the La centers). The 1H and 13C assignments for H2bpcd and the metal–bpcd2– complexes were made on the basis of 2D COSY and HSQC experiments, which established 1H–1H and 1H–13C correlations. The NMR spectral data were used to establish the symmetry of the cationic complexes present in aqueous solution. The data indicate that the La(III)–bpcd2– and Sm(III)–bpcd2– complexes are present in solution as a single species with C2 symmetry. The 1H NMR spectrum of [Nd(bpcd)]PF6 in D2O consists of eight considerably line-broadened, paramagnetic-shifted singlets. The ab initio quantum mechanical calculations at the PCM/MP2/SDD//HF/SDD level, which were established previously for determining isomerization energies for octahedral M(III)–bpad2– complex ions, were used to determine the relative free energies of the geometric isomers possible for eight- and nine-coordinate La(III)–bpcd2– cationic aqua complexes in aqueous solution, i.e., [La(bpcd)(H2O)2]+ and La(bpcd)(H2O)3]+

    Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned

    Get PDF
    Citation: Leys, B., Brewer, S. C., McConaghy, S., Mueller, J., & McLauchlan, K. K. (2015). Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned. Environmental Research Letters, 10(11), 114009. https://doi.org/10.1088/1748-9326/10/11/114009Fire is one of the most prevalent disturbances in the Earth system, and its past characteristics can be reconstructed using charcoal particles preserved in depositional environments. Although researchers know that fires produce charcoal particles, interpretation of the quantity or composition of charcoal particles in terms of fire source remains poorly understood. In this study, we used a unique four-year dataset of charcoal deposited in traps from a native tallgrass prairie in mid-North America to test which environmental factors were linked to charcoal measurements on three spatial scales. We investigated small and large charcoal particles commonly used as a proxy of fire activity at different spatial scales, and charcoal morphotypes representing different types of fuel. We found that small (125–250 μ m) and large (250 μ m–1 mm) particles of charcoal are well-correlated (Spearman correlation = 0.88) and likely reflect the same spatial scale of fire activity in a system with both herbaceous and woody fuels. There was no significant relationship between charcoal pieces and fire parameters <500 m from the traps. Moreover, local area burned (<5 km distance radius from traps) explained the total charcoal amount, and regional burning (200 km radius distance from traps) explained the ratio of non arboreal to total charcoal (NA/ T ratio). Charcoal variables, including total charcoal count and NA/ T ratio, did not correlate with other fire parameters, vegetation cover, landscape, or climate variables. Thus, in long-term studies that involve fire history reconstructions, total charcoal particles, even of a small size (125–250 μ m), could be an indicator of local area burned. Further studies may determine relationships among amount of charcoal recorded, fire intensity, vegetation cover, and climatic parameters

    GLUE: a flexible software system for virus sequence data

    Get PDF
    Background: Virus genome sequences, generated in ever-higher volumes, can provide new scientific insights and inform our responses to epidemics and outbreaks. To facilitate interpretation, such data must be organised and processed within scalable computing resources that encapsulate virology expertise. GLUE (Genes Linked by Underlying Evolution) is a data-centric bioinformatics environment for building such resources. The GLUE core data schema organises sequence data along evolutionary lines, capturing not only nucleotide data but associated items such as alignments, genotype definitions, genome annotations and motifs. Its flexible design emphasises applicability to different viruses and to diverse needs within research, clinical or public health contexts. Results: HCV-GLUE is a case study GLUE resource for hepatitis C virus (HCV). It includes an interactive public web application providing sequence analysis in the form of a maximum-likelihood-based genotyping method, antiviral resistance detection and graphical sequence visualisation. HCV sequence data from GenBank is categorised and stored in a large-scale sequence alignment which is accessible via web-based queries. Whereas this web resource provides a range of basic functionality, the underlying GLUE project can also be downloaded and extended by bioinformaticians addressing more advanced questions. Conclusion: GLUE can be used to rapidly develop virus sequence data resources with public health, research and clinical applications. This streamlined approach, with its focus on reuse, will help realise the full value of virus sequence data

    Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-X(L)

    Get PDF
    BACKGROUND: Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. RESULTS: Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-X(L). CONCLUSION: All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death

    Polyoxidovanadates' interactions with proteins: an overview

    Get PDF
    Polyoxidovanadates (POVs, previously named polyoxovanadates) are a subgroup of polyoxidometalates (POMs, previously named polyoxometalates) with interesting pharmacological actions that have been tested as potential antidiabetic, antibacterial, antiprotozoal, antiviral, and anticancer drugs. They contain mainly vanadium and are able to interact with proteins, affecting various biological processes. The most studied POV is the isopolyoxidovanadate decavanadate (V-10), which interacts with proteins and/or enzymes such as tyrosine protein phosphatases, P-type ATPases, RNA triphosphatases, myosin and actin. However, in many POVs-protein systems, the binding sites and/or the residues involved in the interaction are not identified. In the present review, the interactions of POVs, as well as linear trivanadate (V-3), both linear and cyclic tetravanadate (V-4) and two proposed heptavanadate (V-7; which are better described by V-10 molecules), with proteins are described through X-ray crystallographic studies. Interactions with POVs through theoretical and spectroscopic studies of proteins related to muscle contraction, serum, oxidative stress, and diabetes were also discussed. In sum, herein, we describe POVs' interactions with various proteins including acid phosphatase A, receptor tyrosine kinase, ectonucleoside triphosphate diphosphohydrolase (NTPDases), transient receptor potential cation channel (TRPM4), phosphoglucomutases, P-type ATPases, myosin, actin, transferrin, albumin, and glucosidases, among others. The putative POVs' effects on proteins are impacted by the POV' stability and speciation. The modes of POVs' interactions include H-bond, electrostatic, H-bond + electrostatic, van der Waals, and covalent binding. The spectroscopic, X-ray and computational results, the sites and modes of binding are described in detail. (C) 2021 The Authors. Published by Elsevier B.Vinfo:eu-repo/semantics/publishedVersio
    • …
    corecore